The impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model.

TitleThe impact of mass gatherings and holiday traveling on the course of an influenza pandemic: a computational model.
Publication TypeJournal Article
Year of Publication2010
AuthorsShi P, Keskinocak P, Swann JL, Lee BY
JournalBMC Public Health
Date Published2010
KeywordsAdolescent, Adult, Aged, Child, Child, Preschool, Computer Simulation, Disease Outbreaks, Female, Georgia, Holidays, Humans, Infant, Infant, Newborn, Influenza A Virus, H1N1 Subtype, Influenza, Human, Male, Middle Aged, Models, Theoretical, Travel, Young Adult

BACKGROUND: During the 2009 H1N1 influenza pandemic, concerns arose about the potential negative effects of mass public gatherings and travel on the course of the pandemic. Better understanding the potential effects of temporal changes in social mixing patterns could help public officials determine if and when to cancel large public gatherings or enforce regional travel restrictions, advisories, or surveillance during an epidemic.METHODS: We develop a computer simulation model using detailed data from the state of Georgia to explore how various changes in social mixing and contact patterns, representing mass gatherings and holiday traveling, may affect the course of an influenza pandemic. Various scenarios with different combinations of the length of the mass gatherings or traveling period (range: 0.5 to 5 days), the proportion of the population attending the mass gathering events or on travel (range: 1% to 50%), and the initial reproduction numbers R0 (1.3, 1.5, 1.8) are explored.RESULTS: Mass gatherings that occur within 10 days before the epidemic peak can result in as high as a 10% relative increase in the peak prevalence and the total attack rate, and may have even worse impacts on local communities and travelers' families. Holiday traveling can lead to a second epidemic peak under certain scenarios. Conversely, mass traveling or gatherings may have little effect when occurring much earlier or later than the epidemic peak, e.g., more than 40 days earlier or 20 days later than the peak when the initial R0 = 1.5.CONCLUSIONS: Our results suggest that monitoring, postponing, or cancelling large public gatherings may be warranted close to the epidemic peak but not earlier or later during the epidemic. Influenza activity should also be closely monitored for a potential second peak if holiday traveling occurs when prevalence is high.

Alternate JournalBMC Public Health
PubMed ID21176155
PubMed Central IDPMC3022852
Grant List1U54GM088491-0109 / GM / NIGMS NIH HHS / United States
5P01HK000086 / HK / PHITPO CDC HHS / United States
5R01LM009132 / LM / NLM NIH HHS / United States
U54 GM088491 / GM / NIGMS NIH HHS / United States
Publication Categories: